Forschungseinrichtungen - Microsystems Technology

Postfach 101344
03046 Cottbus

Micro actuators and sensors are the fundamentals of miniaturized, intelligent and networked systems. Since 2012, a completely new type of powerful actuators has been developed and tested in the project group "Mesoscopic Actuators and Systems" MESYS of the Fraunhofer Institute for Photonic Microsystems IPMS in cooperation with the Brandenburg University of Technology BTU Cottbus - Senftenberg. Electrostatic actuators are used to move plates or bend cantilevers and therefore deflect light or laser beams, move liquids or generate ultrasound. The researchers aim is to solve fundamental problems and limitations of conventional electrostatic actuators, for which large deflections can only be realized in combination with large dimensions and high energy consumption. Using a suitable lever principle, the researchers developed a new class of electrostatic bending actuators that of an extremely compact design, large deflections and no hysteresis. Using conventional silicon manufacturing processes, these new actuators can be integrated directly into semiconductor components and CMOS circuits, thus enabling cost-effective volume production. Thanks to high performance and scalability of the patented actuators, various fields of application and design possibilities can be adressed. Optical applications are, for example, high-precision positioning drives of micro-tilt mirrors or lens systems for laser beam deflection, pico projectors, 3D-endoscopes or microscopic applications. NED-actuators are also suitable as optical switches or the highly precise positioning of optical waveguides. Furthermore, a variety of non-optical applications can be addressed, such as micro pumps and valves for microfluidic systems or as miniaturized loudspeakers for hearing aids, smartphones and wearables. Contrary to existing micromechanical loudspeakers NED-based speakers offer both an extremely compact design and high performance.

Rutherfordstraße 2
12489 Berlin
+49 30 67055-509

The main expertise of this Institute is the development of intelligent sensors and data processing software solutions for commercial, industrial and scientific purposes.

Some of the Institute key products and applications are shown in the figure above, these application are used today for the latest airborne and satellite technology. The knowledge and spin-offs gained from such products have been passed on to commercial and industrial users, and are now used for technology transfer projects for commercial and industrial purposes.

The institute is also dedicated to scientific and research activities, for this education and technology transfer plays a major role, the institute is currently involved with partnerships with global universities and fellow institutes in conducting international summer schools for students, and encouraging and promoting student transfer and scholarships for PhD students.

The Institute also defines and develops geometrically and/or spectral high-resolution sensor systems in the visible and infrared area of the electromagnetic radiation as well as the thematic real time processing of picture data for information relevant for users for strategically purposes. The operational application for such sensors requires an extensive autonomy which allows the independent operating of the system which is used in the development and building of small satellites.

Magdeburger Straße 50
14770 Brandenburg
03381 355 101
Gustav-Kirchhoff-Str. 4
12489 Berlin
+49 (0)30 / 6932-2602

The Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik (FBH) researches electronic and optical components, modules and systems based on compound semiconductors. These devices are key enablers that address the needs of today’s society in fields like communications, energy, health and mobility. Specifically, FBH develops light sources from the visible to the ultra-violet spectral range: high-power diode lasers with excellent beam quality, UV light sources and hybrid laser systems. Applications range from medical technology, high-precision metrology and sensors to optical communications in space. In the field of microwaves, FBH develops high-efficiency multi-functional power amplifiers and millimeter wave frontends targeting energy-efficient mobile communications as well as car safety systems. In addition, compact atmospheric microwave plasma sources are devellopped for medical applications or surface coating.

The FBH is a competence center for III-V compound semiconductors and has a strong international reputation. FBH competence covers the full range of capabilities, from design to fabrication to device characterization.

In close cooperation with industry, its research results lead to cutting-edge products. The institute also successfully turns innovative product ideas into spin-off companies. Thus, working in strategic partnerships with industry, FBH assures Germany’s technological excellence in microwave and optoelectronic research.

The Ferdinand-Braun-Institut develops high-value products and services for its partners in the research community and industry which are tailored precisely to fit individual needs. The institute offers its international customer base complete solutions and know-how as a one-stop agency – from design to ready-to-ship modules.

Research topics & competencies:

  • Diode lasers
  • Gallium nitride optoelectronics
  • Microwave components & systems
  • Gallium nitride electronics
  • Materials and process technology
Geiselbergstr. 69
14476 Potsdam
+49 (0)331 / 568-10


Progress in optical technologies is considerably based on novel functional materials with special optical, electrical and photosensitive properties. Functional polymers and polymer-based functional elements for optical technologies are focal points of development at Fraunhofer IAP. These activities can be summarized under the headline “Light as a tool – tools for light”. Research projects combine on an interdisciplinary bases polymer synthesis, processing and the fabrication of optical functional elements and devices. Key aspects in research complexes cover: materials for all-optical structuring used for optical components, security labels and structured biofunctional surfaces; holographic materials for fabrication of diffractive optical elements; liquid crystals and polymers processable by photo-orientation for the fabrication of anisotropic functional layers in display technologies, sensor systems (e.g. retarder, polarizer, anisotropic emitter); semi-conducting and electro-luminescent polymers and nano-composites applicable for organic light-emitting diodes (OLED), organic field-effect transistors (OFET) and organic photovoltaic, development of optical probes for life sciences, optical oxygen measurement in small volumes and development of polymer lasers. Additional subjects of current research cover for example fluorescent materials for special light converter systems, organic lasing and chromogenic materials for smart windows and display application, materials for functionalization of surfaces and optical functional layers in sensor systems as well as organic-inorganic hybrid materials and nano-composites for various applications in optics and photonics.

Tailored on customer needs Fraunhofer IAP offers a complete range of research and development services from high-purity synthesis and analysis of materials, processing and device technologies up to prototype testing based on interdisciplinary experiences of chemists, physicists and engineers and state-of-the-art equipment, such as clean-room facility, as well. Working with partners from optical and chemical industries Fraunhofer IAP acts at the interface between material science and optics and as mediator between chemical and optical industry.

Scientists of Fraunhofer IAP give lectures at Potsdam University, e.g. on polymer chemistry, polymer physics, photochemistry, photophysics and supramolecular chemistry, and take care of PhD students.

Fraunhofer HHI does research and development in the areas of photonic components and networks, fiber optic sensor systems, mobile networks, and video coding and transmission. With our 300 employees and 200 students, we focus on enabling the continuous growth of internet traffic, and on developing new sensor technologies for various applications. Due to our long standing history in research, nowadays every internet user is in contact – without knowing – with our technologies: Every second bit transported in the internet is a H.264 or H.265 encoded movie. HHI is a major contributor to these standards, which are installed on about two billion devices. Every second bit transported in the internet also touches on of our photonic components, which serve as optoelectronic converters in the nodes of the network.


Gustav-Meyer-Allee 25
13355 Berlin
+49 (30) 46403-219

Fraunhofer IZM specializes in industry-oriented applied research. Fraunhofer IZM develops assembly and interconnection technology, also known as electronic/photonic packaging. Almost invisible and undervalued by many, electronic packaging is at the heart of every electronic application. Our technologies connect the individual components, protect components and devices from vibration and moisture, and reliably dissipate heat. Fraunhofer IZM thus ensures that electronic devices continue to function reliably in even the harshest conditions – we even integrate electronics into golf balls. Modern packaging technologies make developing smaller and smaller products possible. We process ICs thinner than a sheet of paper.

The business area Photonics combines Fraunhofer IZM’s skills and know-how to tackle challenges in telecommunication, data communication, light generation, materials processing and optical sensors.
We pursue different goals in each of these areas. In communication, broadband capacity, power efficiency, high, heterogeneous packaging density are the main focus, while in lighting, we aim to improve high power density, thermal management, multifunctional integration, wavelength conversion and beam guiding. In sensor technology, application-specific heterointegration of excitation source, sensor and analysis electronics take center-stage. However, three goals are pursued across all these areas: volume adjusted manufacturing technology, cost-efficiency and high yield.

Das Institut für interdisziplinäre Technologien Berlin gGmbH (IITB) wurde im Jahre 2017 als gemeinnützige private Forschungseinrichtung zur Durchführung von Technologieprojekten mit interdisziplinärem Charakter gegründet. Die Kernkompetenzen liegen auf den Gebieten Photonik, Elektronik und Messtechnik.Das IITB ist vor allem Partner von kleinen und mittelständischen Unternehmen. Zu diesem Zweck bietet das IITB komplette Lösungen an und führt Forschungsvorhaben aus.Mit dem Fokus in der Region ist das Institut für interdisziplinäre Technologien Berlin aber auch überregional und international tätig. Arbeitsgebiete Unser Spezialgebiet sind Laser-F&E und Laseranwendungen sowie Komponentenentwicklung. Darüber hinaus verfügen wir über umfangreiche Erfahrung mit Sensoren, optischer Simulation, Elektronik, Plasmatechnik und Spektroskopie.

Leistungsangebot Forschung, Entwicklung, Projekt- und IP-Management, Studien und Beratungsleistungen, Technologie-Transfer Beispiele für unsere qualifizierten Beratungsleistungen sind

•    Produktentwicklung und Produktdesign
•    Bewertung und Vergleich von Technologien, Konzepten und Produkten
•    Erstellung oder Bewertung von Anträgen für Förderprojekte und Patentanmeldungen

Wir arbeiten sowohl in unseren eigenen Räumlichkeiten als auch in den Räumlichkeiten unserer Kunden. Durch die Zusammenarbeit mit Forschungsinstituten haben wir Zugang zu einer breiten Palette weiterer spezialisierter Instrumente und Geräte.

Kantstraße 55
14513 Teltow
+49 (0)3328 / 33 46-0

The Institute for Thin Film and Microsensoric Technologies (IDM) is a non-profit research organisation specialized on customer-specific research and development in material sciences. One of the main research topics focuses on the development of functional polymers for applications in optical technologies. Research and development activities cover chemical synthesis of functional materials for optical and sensor systems, polymer processing, structuring and replication techniques as well as development of funcional devices for optical and sensor applications. IDM offers material development, processing and development of optical devices from one source. Among key activities the development of special materials for lithography and all-optical fabrication of diffractive optical elements should be mentioned. The IDM offers customer-specific synthesis of organic and polymeric materials.


Fabeckstr. 60-62
14195 Berlin
+49 (0)30 / 844 923 25

LMTB ... from ideas to new optical methods in medical technology and micromachining

LMTB is a nonprofit institute for research, development and training in biomedical optics and applied laser technology. Years of experience and expertise in the areas of analytical and imaging diagnostics, minimally invasive therapy and laser precision machining, move boundaries and enable new solutions. The Laser and Medical Technology GmbH, Berlin (LMTB) is a nonprofit research and development facility for Biomedical Optics and Applied Laser Technology. The main objective is technology transfer, i.e. to develop new concepts in those two areas and to transfer them into industry and into medical practice.

Many ideas at LMTB are due to the proximity to the University Hospital Charité, the three major universities and other non-university research institutions in Berlin. There are several leading medical technology manufacturers among the shareholders of LMTB. A science-driven team of approximately 30 employees is active in a variety of mostly publicly funded research collaborations with academic and industrial partners and in direct contact with the industry.

At the same time, LMTB is a partner in providing customized solutions in the context of commercial R&D projects. It organizes courses and workshops on medical lasers and industrial laser applications. LMTB offers expert advice and the conduction of studies on approval and patent related issues to medical device manufacturers. Molecular methods have become increasingly important for LTMB in recent years compared to traditional laser therapies and diagnostic methods.

For the blood products and transfusion market, LMTB has developed a number of sensors for hemolysis and for gathering several other blood parameters, which are now ready for integration into system solutions of respective companies. Other appliers of this technology are blood donation centers, which are provided with a non-invasive quality control. The main expertise of LMTB is its comprehension of interaction processes between light and irradiated matter. In biomedicine, light propagation in strongly scattering media is especially important, the so-called tissue optics. This is an essential basis for the development of new diagnostic and laser-therapeutic procedures, and corresponding devices. The main focus in the field of material processing is precision machining of transparent and brittle materials and the development of laser-optical components. 3D processing stations and short-pulse laser systems are available for the development of innovative methods for glass processing and photovoltaics. A new trepanning optics was developed by the applied laser technology group of LMTB, which combines a high operating speed with a substantially improved quality of laser drilling and laser cutting.

Brief history of LMTB
Today's LMTB is a result of the merger of two institutions in 1995, that had significantly promoted the use of lasers. One was the Laser Medical Center (LMZ), founded in 1985, the first of such institutions in Germany. The other merger partner was founded in 1987 in Berlin, the Solid-state Laser-Institute (FLI), which gave its sector essential stimuli for many years. Today, LMTB focuses on the R&D transfer using innovative laser and light emitting diodes in material processing and medical diagnostics and therapy.

Schwarzschildstr. 8
12489 Berlin
+49 (0)30 / 6392 3530

The Leibniz-Institute for Analytical Sciences – ISAS provides innovative solutions for analytical challenges in modern material and life sciences. The range of our scientific works reaches from fundamental research  via developing analytical procedures, techniques and instruments through prototype  manufacturing to validation and  testing of the results. Thus, we can directly implement methodic developments into new applications.  The institute unites scientists from various fields under one roof: e.g. physicists, chemists, biologists and engineers. We are closely connected to the Universities in Dortmund (TU Dortmund), Bochum (Ruhr-University Bochum) and Berlin (TU Berlin) by joint professorships. Our research is geared to the key topics of "material science and optical technologies" and "biomedical research and technologies".
In the Berlin department of ISAS optical spectroscopy is developed for material- interface- and process- analytics. Applications range from analysis of minutest amounts of material to particularly interfaces and nanostructures. Polarisation dependent optical spectroscopy-  at ISAS employed  in the spectral range from the far IR to vacuum-UV - gives information about composition, structure and electronic properties of a system.  Apart from  inorganic nanostructures particularly organic molecules as “predefined” units in functional layers and  at  interfaces become increasingly im-portant. Such structures are technologically important for instance in sensorics, biotechnology, photovoltaics and optoelectronics.  


Köpenicker Str. 325, Haus 201
12555 Berlin
+49 (0)30 / 609 847 20

The OUT e.V. was founded in 1991 as an innovative external research institution.
OUT e.V. is a nonprofit-registered association of private law. The statuary aim of OUT e.V. is to promote science and research, especially in the fields of micro and optoelectronics as well as environmental technologies. Members are SMEs, other research institutions and individual persons.

Out e.V. promotes and carries out industrial and basic research and development of prototypes in the fields of optoelectronics, thin film technologies, sensors and data processing. The institution owns two special laboratories with modern measurement equipment and simulation software.

OUT e.V. offers a wide range of successful, active international network management for SMEs working in the field of security technologies.

OUT e.V. has many years of experience in project coordination for single projects and research cooperation of varying scale.

OUT e.V. is a dynamic, mature research institution and exemplifies flexible networking between industry and research partners with the help of government support. OUT e.V. is always open to new and innovative technical fields for the benefit of the whole society.

OUT e.V. is a dynamic, mature research institution and exemplifies flexible networking between industry and research partners with the help of government support. OUT e.V. is always open to new and innovative technical fields for the benefit of the whole society.

Hochschulring 1
15745 Wildau
+49 (0)3375-508119

Technical University Wildau – A Competent Partner for Commercial Businesses and Scientific Institutions

The opening of the Technical University Wildau in 1991 has resulted in academic teaching as well as scientific research and development becoming firmly established and highly esteemed in the region to the south-east of Berlin. Not only businesses and scientific institutions, but also public administrative bodies all profit directly from this development by being able to recruit Wildau graduates directly as young specialists and managers. They also benefit from R&D cooperation and projects, networks for knowledge and technology transfer in addition to further-training programmes which can be tailor-made for companies and a wide range of institutions.

Documented quality control and direct practical relevance are the outstanding hallmarks of 28 degree courses on offer, ranging from engineering, business and administration to legal studies, available both on campus and via distance learning. With more than 4,200 students Wildau is the biggest university in the regional state of Brandenburg. Changing from diploma to bachelor and master programmes has considerably strengthened the academic character of the Technical University Wildau.

Photonic, Laser and Plasma Technologies

Professor Sigurd Schrader’s working group is active in the areas of photonics, optical technologies, laser and plasma technologies, both in teaching and applied research. This group is involved in the following fields:

  • Material syntheses and experiments
  • Producing optoelectronic elements and components
  • Characterizing optoelectronic elements and components
  • Process characterization and optimization

This research group cooperates closely with industrial partners, mainly small and medium-sized companies situated in the Berlin-Brandenburg capital region. Additionally, as a participant in national and international networks it has considerable contact with research institutions and universities. There is also direct cooperation on a contractual basis with the IHP Leibniz Institute for Innovative Microelectronics Ltd in Frankfurt an der Oder, which had led to their joint research and training centre (Joint Lab). The main focus of this activity is to develop concepts for innovative silicon based elements and technologies for high-speed electronics and photonics. Among Joint Lab’s activities are experiments aimed at generating graphic layers in order to attain higher limit frequencies up to the terahertz level. This may lead to new applications in sensorics and medical technology.

Microsystems Technology

Microsystems Technology is represented in the teaching and applied research carried out by Professor Andreas Foitzik. Hardware content is predominant in this field and the focus is on biological microsystems technology for life-science products and applications. A dust-free room (for structures as small as a nanometre) and a plastics laboratory (for the quick implementation of prototypes) are available. The wide range of research areas includes:

  • Elements for biochips and biosensors
  • Reactors in macro and micro fields (including microfluidics)
  • Processing surface structures
  • Constructing and joining technology (joining smaller elements to a larger system)
  • Integrating circuits (signal connection between the micro and macro world)
  • Measuring and regulating the overall system
  • Microstructuring
  • Micro injection moulding of small plastic elements
  • Cutting plastic or metal micro elements
  • Mechanical and optical material examination

The group’s expertise and infrastructure are available for applications beyond biological microsystems technology.


Karl-Liebknecht-Str. 24/25
14476 Potsdam
0331 977 5222

Die    Physikalische    Chemie    der    Universität Potsdam (UPPC,   ist   Teil   des   Instituts für Chemie   und   hat   ihren   Sitz   am neuen naturwissenschaftlichen Campus in   Potsdam-Golm,   der   Teil   des   Golmer Wissenschaftsparks ist. Unter Leitung von Prof. Dr. Hans-Gerd Löh-mannsröben, apl. Prof. Dr. Michael U. Kumke und JProf. Dr. Ilko Bald führt UPPC die Ausbildung in den naturwiss. Bachelor- und Masterstudiengängen in der Teildisziplin „Physikalische Chemie“ durch und ist stark in der Doktorandenausbildung engagiert. Sehr erfolgreich ist die Beteiligung an der Graduiertenschule SALSA, 2012 Siegerin im Exzellenzwettbewerb des Bundes und der Länder.

Grundlagen- und Anwendungsforschung in Photochemie und Photophysik, Laserspektroskopie und optischer Sensorik sind die Kernkompetenzen von UPPC. Die Untersuchung von elementaren  Gasphasenreaktionen mit laserbasierter Ionenmobilitäts (IM)-Spektrometrie als ein spannendes Beispiel für die Erforschung von fundamentalen physiko-chemischen Phänomenen und die Entwicklung optischer Detektionsschemata für die point-of-care Diagnostik von Biomarkern für Lungenkrebs- und Alzheimer-Erkrankun¬gen verdeutlichen das breite Spektrum der Aktivitäten und Expertisen.
Die Berufung von JProf. Dr. Ilko Bald (Jan. 2013) ist eine wichtige wissenschaftliche und personelle Verstärkung (s. Beispiele für faser-basierte optische Methoden, in denen UPPC eine führende Rolle innehat, sind die Photonendichtewellen (PDW)-Spektroskopie (Bunsen-Kirchhoff-Preis für Dr. Oliver Reich 2014, spin-off-Firma PDW Analytics) sowie die O2- und pH-Sensorik auf mikroskopischer und zellulärer Ebene (spin-off-Firma Colibri Photo¬nics). Die hervorragende F&E-Infrastruktur verbun-den mit einer erstklassigen instrumentellen Ausstattung, beides noch deutlich gesteigert durch den Bezug des Drittmittelzentrums (Haus 29) im Herbst 2013, sowie die ausgeprägte interdisziplinäre Anlage der Forschungsthemen zeichnen UPPC als exzellenten Forschungspartner aus. Derzeit sind ca. 50 Mitarbeiter/innen an 15 F&E-Vor-haben mit regionalen, nationalen und internationalen Forschungs- und Industriepartnern beteiligt. Gemeinsam mit dem Leibniz-Institut für Astrophysik Potsdam (AIP) wird UPPC das Zentrum für Innovationskompetenz inno-FSPEC Potsdam, gerade (August 2016) mit der weiteren BMBF-Förderung 2016 – 2020 ausgezeichnet, zu einem nationalen Exzellenzzentrum für faseroptische Spektroskopie und Sensorik entwickeln.

F&E-Programme und Projekte von UPPC (Auswahl, Kurztitel, Stichpunkte i. Klammern)

(I) „Zentrum für Innovationskompetenz inno-FSPEC Potsdam. Innovative faseroptische Spektroskopie und Sensorik“, Sieger in BMBF-Wettbewerben 2008 und 2015 (faserbasierte chemische Sensorik und optische Vielkanalspektroskopie, Vielfachstreuung, Photonendichtewellen, Angewandte Analytische Photonik, seit 2009).

(II) „Geochemische Radionuklidrückhaltung an Zementalterationsphasen (GRaZ)“, BMWi-Verbundvorhaben (molekulares Prozessverständnis, Wechselwirkungen von Lanthanoiden mit Komponenten homogener und heterogener salinarer Systeme, 2015 – 2018).

(III) Nachwuchsgruppe „Angewandte Laser-sensorik in komplexen Biosystemen (ALS ComBi)“, BMBF, Sieger im Wettbewerb Inno-Profile-Transfer 2012 (super resolution Spek-troskopie, Einzelmolekül- & Einzelzell-Detek-tion, photonische Kristallfasern, Atomkraft-Mikroskopie, Optogenetik, 2012 – 2017).

(IV) „School of Analytical Sciences Adlershof (SALSA)“, Exzellenzgraduiertenschule (Analytik in Bio- und Lebenswissenschaften, Bild¬gebung und Mikroskopie, 2012 – 2019, derzeit 6 Doktoranden bzw. Doktorandinnen).

(V) „Nanopartikel-basierte photonische Vor-Ort-Analytik von Endotoxinen in Biopharmazeutika (EndoProve)“, BMBF-Verbundprojekt (Quantenpunkte als photonische Sonden, Aptamere-Erkennungselemente, 2015 – 2018).

(VI) „Entwicklung innovativer bestandsspezifischer Impfstoffe für Geflügel, innoVAK4¬DART“, BMEL-Verbundprojekt (Charakterisierung von Bakterien durch Fluoreszenzmikroskopie und Durchflußzytometrie, Photo-Inaktivierung, 2014 – 2017).

(VII) „Sensorsystem für Methan-Monitoring b. Schiefergasgewinnung“, BMWi ZIM-Koop.-Projekt, (CH4-Lasersensorik, 2014 – 2016).

(VIII) „Rohstoffscreening mit spektral-opti-schen Verfahren bei der Getreidelagerung (OptiScreen)“, BMEL-Verbundprojekt (Myko-toxin-Detektion, Fluoreszenzspektroskopie an Getreide, IMS-Analytik, 2015 – 2018).

(IX) „Intelligence for Soil. Integrated System for Site-Specific Soil Fertility Management (I4S)”, BMBF-Verbundvorhaben (2015 – 18).

(X) „Photonisch-mikrofluidisches Produktionsverfahren zur ultraschnellen Herstellung maßgeschneiderter monoklonaler Antikörper (Affinity Track)“. StaF-Programm (2017 – 19)

(XI) Industrieprojekte “UV Absorber” und “Lebensmitteldispersionen (2016 – 17)

Instrumentierung von UPPC

Umfassende optisch-spektroskopische Instrumentierung, Spektralbereich 200 nm – 10 µm, hohe spektrale, zeitliche (sub ps) und räumliche (sub µm) Auflösung, Mikroskopie und Bildgebung. Erstklassige instrumentelle Ausstattung mit Investitionsmaßnahmen von ca. 10 Mio. € seit 2001. Derzeit Ausstattung s. Beispiele:

•    Diverse Laserapparaturen mit Absorptions- und Emissionsdetektion
•    Einzelmolekülspektrometer
•    Fluorescence-Imaging-Mikroskop-System
•    PDW-, Lichtstreu- und Photonenkorrelationsspektrometer
•    Ionenmobilitäts- und Massenspektrometer
•    Fasertechnologie und –fusionsspleißgerät
•    Ultrakurzpuls Ti:Sa-Laser mit Nachver-stärkung, Frequenzkonversion und OPA
•    Schreibstand für Faser-Bragg-Gitter
•    Durchflusszytometer
•    Mikro-Thermophorese NanoTemper




Am Neuen Palais 10
14469 Potsdam

The main task of the company is to organize a modern and competitive knowledge and technology transfer at the University of Potsdam as well as in the region, but also on a national and international scale. The goal is the effective addition of excellence in research and teaching by a professional transfer of results from science and research.

The Department of Executive Education currently focuses on:
•    Master degree programs in the areas of Public Administration and Private Management,
•    Certificate courses in Mediation;
•    Scientific training courses;
•    International projects in further education;
•    Projects for refugees and migrants.

The projects of the Department of Applied Research & Development mainly focus on:
•    Basic research;
•    Applied research and development;
•    Contract research;
•    Scientific and technical consulting and services.

Important research areas are especially antibody research, inorganic chemistry research to improve the recycling of valuable precious and rare earth metals, laser development, material research of innovative polymer materials, geoscience research and consulting services.

The Department of UP Transfer Services offers the following services:
•    Conference services mainly for scientific events;
•    Patent licensing for higher education and research institutions of Brandenburg (Project “Brainshell”);
•    UniShop of the University of Potsdam, selling a great variety of merchandising products;
•    Project management and controlling;
•    Administrative services.